

Mission Infusion Task

Intelligent Data Understanding Workshop Feb. 4-6, 2004

Context Model Based Onboard Data Processing and Compression

PI: Pen-Shu Yeh(GSFC)

Co-I: Greg Donohoe (U. Idaho), Khalid Sayood (U. Nebraska)

Si-Chee Tsay, Warren Wiscombe (GSFC)

State of Onboard Processing

- Limited to simple task in the past: co-adding
- Universal Lossless Compression developed/validated since '96, on > 15 missions
- New tunable compression under development
 - > 20 Msamples/sec algorithm and RT ASIC
- Fourier Transform processor
 - Planned for GIFTS/EO-3

Limited onboard programmable processing power

Lack of algorithm specification by science team

Project Description

- Objective: utilize context information to develop algorithms for processing multi- and hyper-spectral data
 - → improve compression performance
 - → facilitate data fusion/mining, understanding needed for intelligent sensor/instrument control
- **Emphasis:** "implementability" of developed algorithms on "real" space-ready re-configurable processors
- General Approach:
 - Select meaningful "context" with science team
 - Cloud has been selected as the first contex
 - Develop onboard processing algorithm
 - Simulation on reconfigurable processor to obtain performance benchmark and evaluate results

Technical Approach for Applications

Spectral Feature Extraction for Context

- "cloud" detection based on multi-spectral data
 - Impact on lossless compression
 - Other applications: cloud height computation, percentage coverage within field of view, ...

Spectral Information Representation

- Generic representation for hyperspectral data
 - Impact on lossless compression
 - Other applications: Detection of trace elements
- "cloud" spectral representation

Spectral Feature Extraction for Cloud

Cloud Feature Detection and Compression Study

Compression Results Using Cloud Contex

X Contes

Results on L1A Data

D 1D 20 3D bands

Compression improvement 40%

Note: --- without cloud context with cloud context

Results on L1B Data

Compression improvement 60%

Implementation Study

- CPU and FPGA not best choice for Data Streaming computation
- DSP not efficient enough

A new generation of radiation tolerant re-configurable processor: Field Programmable Processor Array (FPPA) has been in development

→ Provides a "giant" leap forward in onboard processing capability needed in data fusion/understanding, situation analysis, sensor control,

First generation FPPA with 16 Processing Elements

Processing Element Components

FPPA example: Sensor Readout Correction

Plans

- FPPA simulation: simplified cloud context detection algorithm
 - Challenges: multi-spectral input needed in conditional logic sequence
- Lossless compression study based on combined cloud feature extraction and spectral decomposition approach
- Explore: other context, other applications?

References

Zhou, Y. P, Yeh, P.-S., Wiscombe, W. and Tsay, S.-C., "Clould context-based onboard data compression", *Proc. IGARS 2003*, Toulouse, July 21-25, 2003

Donohoe, G and Yeh, P.-S, "Sensor Data Processing on a Reconfigurable Processor", *Proc. ESTO Conf.*, 2003, College Park, MD, June 24-26, 2003